NORTH- HOLLAND Functions That Preserve Families of Positive Semidefinite Matrices

نویسندگان

  • Carl H. FitzGerald
  • Charles A. Micchelli
  • Allan Pinkus
  • Hans Schneider
چکیده

We study various notions of multivariate functions which map families of positive semidefinite matrices or of conditionally positive semidefinite matrices into matrices of the same type. LINEAR ALGEBRA AND ITS APPLICATIONS 221:83-102 (1995) @ Elsevier Science Inc., 1995 0024-3795/95/$9.50 655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(93)00232-O 84 C. H. FITZGERALD ET AL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning

In this work, we consider the problem of learning a positive semidefinite matrix. The critical issue is how to preserve positive semidefiniteness during the course of learning. Our algorithm is mainly inspired by LPBoost [1] and the general greedy convex optimization framework of Zhang [2]. We demonstrate the essence of the algorithm, termed PSDBoost (positive semidefinite Boosting), by focusin...

متن کامل

Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invar...

متن کامل

Ela Positive Semidefinite Maximum Nullity and Zero Forcing Number

The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003